
Linear Algebra I

22/01/2019, Tuesday, 14:00 – 17:00

You are NOT allowed to use any type of calculators.

 Systems of linear equations (1 + 4 + 3 + (1 + 3 + 3) = 15 pts)

Consider the following system of linear equations in the unknowns v, w, x, y, and z where α is a
real number:

2v + 2w + 2x + 4y = 2
2w + 4x + 2y + 2z = 0

4v + w + 5y + z = 4
6v + 3w + 2x + 9y + z = α

(a) Write down the augmented matrix.

(b) By performing elementary row operations, put the augmented matrix into row echelon form.

(c) Determine all values of α so that the system is consistent.

(d) For the values of α found above,

(i) determine the lead and free variables.

(ii) put the augmented matrix into reduced row echelon form by performing elementary row
operations.

(iii) find the solution set.

Required Knowledge:Gauss-elimination, row operations, row echelon form, con-
sistency, and set of solutions.

Solution:

1a: The augmented matrix is given by
2 2 2 4 0 2
0 2 4 2 2 0
4 1 0 5 1 4
6 3 2 9 1 α

 .
1b: By applying elementary row operations, we obtain:

2 2 2 4 0 2
0 2 4 2 2 0
4 1 0 5 1 4
6 3 2 9 1 α


1 = 1

2 · 1
2 = 1

2 · 2
−−−−−−−−−→


1 1 1 2 0 1
0 1 2 1 1 0
4 1 0 5 1 4
6 3 2 9 1 α


3 = 3 − 4 · 1
4 = 4 − 6 · 1
−−−−−−−−−−−−−→


1 1 1 2 0 1
0 1 2 1 1 0
0 −3 −4 −3 1 0
0 −3 −4 −3 1 α− 6




1 1 1 2 0 1
0 1 2 1 1 0
0 −3 −4 −3 1 0
0 −3 −4 −3 1 α− 6

 4 = 4 − 1 · 3
−−−−−−−−−−−−−→


1 1 1 2 0 1
0 1 2 1 1 0
0 −3 −4 −3 1 0
0 0 0 0 0 α− 6






1 1 1 2 0 1
0 1 2 1 1 0
0 −3 −4 −3 1 0
0 0 0 0 0 α− 6

 3 = 3 + 3 · 1
−−−−−−−−−−−−−→


1 1 1 2 0 1
0 1 2 1 1 0
0 0 2 0 4 0
0 0 0 0 0 α− 6




1 1 1 2 0 1
0 1 2 1 1 0
0 −3 −4 −3 1 0
0 0 0 0 0 α− 6

 3 = 1
2 · 3

−−−−−−−−−→


1 1 1 2 0 1
0 1 2 1 1 0
0 0 1 0 2 0
0 0 0 0 0 α− 6

 .
This leads to row echelon form of

1 1 1 2 0 1
0 1 2 1 1 0
0 0 1 0 2 0
0 0 0 0 0 0


if α = 6 and 

1 1 1 2 0 1
0 1 2 1 1 0
0 0 1 0 2 0
0 0 0 0 0 1


if α 6= 6 by diving the last row by α− 6.

1c: The system is consistent if and only if α = 6 and inconsistent otherwise.

1d(i): The lead variables are v, w, and x whereas y z are free variables.

1d(ii): By applying elementary row operations when α = 6, we obtain:
1 1 1 2 0 1
0 1 2 1 1 0
0 0 1 0 2 0
0 0 0 0 0 0


2 = 2 − 2 · 3

1 = 1 − 3
−−−−−−−−−−−−−→


1 1 0 2 −2 1
0 1 0 1 −3 0
0 0 1 0 2 0
0 0 0 0 0 0

 .


1 1 0 2 −2 1
0 1 0 1 −3 0
0 0 1 0 2 0
0 0 0 0 0 0

 1 = 1 − 2
−−−−−−−−−−−→


1 0 0 1 1 1
0 1 0 1 −3 0
0 0 1 0 2 0
0 0 0 0 0 0

 .
1d(iii): From the row reduced echelon form, we see that the general solution is given by

v = 1− y − z
w = −y + 3z

x = −2z.



 Determinants (9 + 6 = 15 pts)

Consider the matrix

M =


α 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1


where α is real number.

(a) By using only row/column operations, find the determinant of M .

(b) Determine all values of α such that M is nonsingular.

Required Knowledge: Determinants, row/column operations, nonsingularity.

Solution:

2a: By subtracting the last row from the first three rows, we see that∣∣∣∣∣∣∣∣
α 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
α− 1 2 1 0

2 2 1 0
1 1 1 0
1 1 1 1

∣∣∣∣∣∣∣∣ .
Now, we subtract the third row from the first two and obtain:∣∣∣∣∣∣∣∣

α− 1 2 1 0
2 2 1 0
1 1 1 0
1 1 1 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
α− 2 1 0 0

1 1 0 0
1 1 1 0
1 1 1 1

∣∣∣∣∣∣∣∣ .
Finally, we subtract the second from the first:∣∣∣∣∣∣∣∣

α− 2 1 0 0
1 1 0 0
1 1 1 0
1 1 1 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
α− 3 0 0 0

1 1 0 0
1 1 1 0
1 1 1 1

∣∣∣∣∣∣∣∣ .
Since the last matrix we obtain is a triangular matrix, its determinant is the product of diagonal
entries. As such we have: ∣∣∣∣∣∣∣∣

α 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

∣∣∣∣∣∣∣∣ = α− 3.

2b: A square matrix is nonsingular if and only is its determinant is nonzero. Therefore, M is
nonsingular if and only if α 6= 3.



 Least squares problem (15 pts)

Find the line of the form y = a+ bx that gives the best least squares approximation to the points:

x 1 1 0
y 0 1 1

Required Knowledge: Least-squares problem, normal equations.

Solution:

The corresponding least squares problem is given by1 1
1 1
1 0

[a
b

]
=

0
1
1

 .
This leads to the following normal equations:[

3 2
2 2

] [
a
b

]
=

[
2
1

]
.

Therefore, we obtain the least squares solution as[
a
b

]
=

[
3 2
2 2

]−1 [
2
1

]
=

1

2

[
2 −2
−2 3

] [
2
1

]
=

[
1
− 1

2

]
.



 Vector spaces ((3 + 4) + (4 + 4) = 15 pts)

(a) Let J be the 3× 3 matrix given by

J =

0 1 0
0 0 1
0 0 0

 .
(i) Is the set S = {A ∈ R3×3 | AJ = JA} a subspace?

(ii) If it is so, find a basis for S and determine its dimension.

(b) Let M be a 2× 2 matrix.

(i) Let LM : R2×2 → R2×2 given by LM (X) = MX + XM. Show that LM is a linear
transformation.

(ii) Take M =

[
a b
c d

]
. Write down the matrix representation of LM using the following

basis for R2×2: { [1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

Required Knowledge: Vector spaces, subspaces, basis, dimension, linear trans-
formations, matrix representations.

Solution:

4a(i): To show that S is a subspace, we begin with the observation that 03×3 ∈ S, that is
S 6= ∅. Let α be a scalar and A ∈ S. Note that

(αA)J = αAJ = αJA = J(αA).

Hence, we obtain αA ∈ S. This means that S is closed under scalar multiplication. Now, let A
and B belong to S and note that

(A+B)J = AJ +BJ = JA+ JB = J(A+B).

Thus, we see that A+ B ∈ S. This means that S is closed under vector addition. Consequently,
S is a subspace.

4a(ii): Let

A =

a b c
d e f
g h i

 .
Note that

AJ =

0 a b
0 d e
0 g h


and

JA =

d e f
g h i
0 0 0

 .
Therefore, A ∈ S if and only if d = g = h = 0 and a = e = i and b = f . In other words, A ∈ S if
and only if

A =

α β γ
0 α β
0 0 α





for some α, β, and γ. This means that A ∈ S if and only if

A = α

1 0 0
0 1 0
0 0 1

+ β

0 1 0
0 0 1
0 0 0

+ γ

0 0 1
0 0 0
0 0 0


for some α, β, and γ. Therefore, S is spanned by

1 0 0
0 1 0
0 0 1

 ,
0 1 0

0 0 1
0 0 0

 ,
0 0 1

0 0 0
0 0 0

 .

Since these three matrices are linearly independent in R3×3, we can conclude that they form a
basis. The dimension of a subspace is the cardinality of a set of basis vectors. Therefore, S is 3
dimensional.

4b(i): Let α and β be scalars and X and Y belong to R2×2. Note that

LM (αX+βY ) = M(αX+βY )+(αX+βY )M = α(MX+XM)+β(MY+YM) = αLM (X)+βLM (Y ).

Therefore, LM is a linear transformation.

In order to find the matrix representation, we need to apply the transformation on the basis
vectors:

LM (

[
1 0
0 0

]
) =

[
a b
c d

] [
1 0
0 0

]
+

[
1 0
0 0

] [
a b
c d

]
=

[
a 0
c 0

]
+

[
a b
0 0

]
=

[
2a b
c 0

]
= 2a ·

[
1 0
0 0

]
+ b ·

[
0 1
0 0

]
+ c ·

[
0 0
1 0

]
+ 0 ·

[
0 0
0 1

]
LM (

[
0 1
0 0

]
) =

[
a b
c d

] [
0 1
0 0

]
+

[
0 1
0 0

] [
a b
c d

]
=

[
0 a
0 c

]
+

[
c d
0 0

]
=

[
c a+ d
0 c

]
= c ·

[
1 0
0 0

]
+ (a+ d) ·

[
0 1
0 0

]
+ 0 ·

[
0 0
1 0

]
+ c ·

[
0 0
0 1

]
LM (

[
0 0
1 0

]
) =

[
a b
c d

] [
0 0
1 0

]
+

[
0 0
1 0

] [
a b
c d

]
=

[
b 0
d 0

]
+

[
0 0
a b

]
=

[
b 0

a+ d b

]
= b ·

[
1 0
0 0

]
+ 0 ·

[
0 1
0 0

]
+ (a+ d) ·

[
0 0
1 0

]
+ b ·

[
0 0
0 1

]
LM (

[
0 0
0 1

]
) =

[
a b
c d

] [
0 0
0 1

]
+

[
0 0
0 1

] [
a b
c d

]
=

[
0 b
0 d

]
+

[
0 0
c d

]
=

[
0 b
c 2d

]
= 0 ·

[
1 0
0 0

]
+ b ·

[
0 1
0 0

]
+ c ·

[
0 0
1 0

]
+ 2d ·

[
0 0
0 1

]
.

This leads to the following matrix representation:
2a c b 0
b a+ d 0 b
c 0 a+ d c
0 c b 2d

 .



 Characteristic polynomial, determinant, and trace (3 + 4 + 4 + 4 = 15 pts)

Let M be the 3× 3 matrix given by

M =

a b c
a b c
a b c


where a, b, and c are real numbers.

(a) By using the relationship between the determinant and eigenvalues of a matrix, show that
0 is an eigenvalue of M .

(b) By using the definition of eigenvalue, show that a+ b+ c is an eigenvalue of M .

(c) By using the relationship between the trace and eigenvalues of a matrix, show that the
characteristic polynomial of M is given by pM (λ) = λ2(λ− a− b− c).

(d) Suppose that a+ b+ c 6= 0. Show that M is diagonalizable.

Required Knowledge: Characteristic polynomial, eigenvalues, determinant, and
trace.

Solution:

5a: First, we observe that M is singular. Indeed, if one of the real numbers a, b, or c is zero, then
M has a zero column and hence det(M) = 0. If none of them is zero, then

M

− b
a

1
0

 =

a b c
a b c
a b c

− b
a

1
0

 = 0

and hence det(M) = 0. Since the determinant is equal to the product of eigenvalues, we can then
conclude that 0 must be an eigenvalue of M .

5b: Note that

M

1
1
1

 =

a b c
a b c
a b c

1
1
1

 = (a+ b+ c)

1
1
1

 .
Therefore, we see that a+ b+ c is an eigenvalue of M .

5c: First, we claim that M cannot have two distinct nonzero eigenvalues. To see this, let λ 6= 0
and note that a b c

a b c
a b c

xy
z

 = λ

xy
z

 .
Then, we have ax + by + cz = λx = λy = λz. This results in x = y = z since λ 6= 0. Since
eigenvectors corresponding to distinct eigenvalues must be linearly independent, we see that M
does not have two distinct nonzero eigenvalues. Therefore, there are two possibilities: either all
eigenvalues are zero or two of them are zero and one is nonzero. Since the trace of a square matrix
equals the sum of the eigenvalues, we have either all eigenvalues are zero and a + b + c = 0 or
a+b+c 6= 0 is the only nonzero eigenvalue. Clearly, we have pM (λ) = λ2(λ−a−b−c) in both cases.

5d: From (c), we know that there are two eigenvalues λ1 = 0 and λ2 = a + b + c 6= 0. Also
from (c), we know that 1

1
1





is an eigenvector corresponding to λ2. Next, we find eigenvectors corresponding to λ1 = 0. Note
that a b c

a b c
a b c

xy
z

 =

0
0
0


implies that ax + by + cz = 0. Since a + b + c 6= 0, at one of the numbers a, b, and c must be
nonzero. Suppose that a 6= 0. Then, we see thata b c

a b c
a b c

− b
a

1
0

 =

0
0
0

 and

a b c
a b c
a b c

− c
a

0
1

 =

0
0
0

 .
Therefore, we have the following eigenvectors for M :

− b
a

1
0

 ,
− c

a
0
1

 ,
1

1
1

 .

Note that ∣∣∣∣∣∣
− b

a − c
a 1

1 0 1
0 1 1

∣∣∣∣∣∣ = −1 ·
∣∣∣∣− b

a 1
1 1

∣∣∣∣+ 1 ·
∣∣∣∣− b

a − c
a

1 0

∣∣∣∣ =
b

a
+ 1 +

c

a
=
a+ b = c

a
6= 0.

Therefore, M has 3 linearly independent eigenvectors and hence is diagonalizable.



 Eigenvalues/vectors (4 + 5 + 2 + 4 = 15 pts)

Consider the matrix

M =

1 0 1
0 2 0
1 0 1

 .
(a) Find the eigenvalues of M .

(b) Show that M is diagonalizable.

(c) Find a matrix X that diagonalizes M .

(d) Find eM by using the matrix X.

Required Knowledge: Eigenvalues, eigenvectors, and diagonalization, matrix ex-
ponential.

Solution:

6a: Note that

det(λI−M) = det(

λ− 1 0 −1
0 λ− 2 0
−1 0 λ− 1

) = (λ−2) det(

[
λ− 1 −1
−1 λ− 1

]
) = (λ−2)

(
(λ−1)2−1

)
= (λ−2)(λ−2)λ.

Therefore, the eigenvalues are given by λ1 = 0 and λ2 = 2.
6b: First, we need to find eigenvectors.

For λ1 = 0, we have

(λ1I −M)x =

−1 0 −1
0 −2 0
−1 0 −1

x1x2
x3

 =

0
0
0

 .
This leads to x1 + x3 = 0 and x2 = 0. Hence, an eigenvector is given by 1

0
−1

 .
For λ2 = 2, we have

(λ2I −M)y =

 1 0 −1
0 0 0
−1 0 1

y1y2
y3

 =

0
0
0

 .
This leads to y1 = y3. Therefore, we obtain

y =

ab
a

 .
Hence, we see that 0

1
0

 and

1
0
1


are linearly independent eigenvectors for λ2 = 2.

Note that ∣∣∣∣∣∣
1 0 1
0 1 0
−1 0 1

∣∣∣∣∣∣ =

∣∣∣∣ 1 1
−1 1

∣∣∣∣ = 2.



Therefore, M has 3 linearly independent eigenvectors and hence is diagonalizable.

6c: Diagonalizers can be found from eigenvectors. Indeed, if we take

X =

 1 0 1
0 1 0
−1 0 1

 ,
we see that

MX =

1 0 1
0 2 0
1 0 1

 1 0 1
0 1 0
−1 0 1

 =

 1 0 1
0 1 0
−1 0 1

0 0 0
0 2 0
0 0 2

 = XD.

6d: Since M = XDX−1, we know that eM = XeDX−1. Therefore, we first need to find the
inverse of X:  1 0 1 1 0 0

0 1 0 0 1 0
−1 0 1 0 0 1

 3 = 3 + 1
−−−−−−−−−−−→

 1 0 1 1 0 0
0 1 0 0 1 0
0 0 2 1 0 1


 1 0 1 1 0 0

0 1 0 0 1 0
0 0 2 1 0 1

 3 = 1
2 · 3

−−−−−−−−−→

 1 0 1 1 0 0
0 1 0 0 1 0
0 0 1 1

2 0 1
2


 1 0 1 1 0 0

0 1 0 0 1 0
0 0 1 1

2 0 1
2

 1 = 1 − 1 · 3
−−−−−−−−−−−−−→

 1 0 0 1
2 0 − 1

2
0 1 0 0 1 0
0 0 1 1

2 0 1
2


Thus, we see that

X−1 =

 1
2 0 − 1

2
0 1 0
1
2 0 1

2

 .
Consequently,

eM = XeDX−1

=

 1 0 1
0 1 0
−1 0 1

1 0 0
0 e2 0
0 0 e2

 1
2 0 − 1

2
0 1 0
1
2 0 1

2


=

 1 0 e2

0 e2 0
−1 0 e2

 1
2 0 − 1

2
0 1 0
1
2 0 1

2


=

 1
2 (e2 + 1) 0 1

2 (e2 − 1)
0 e2 0

1
2 (e2 − 1) 0 1

2 (e2 + 1)

 .


